SIMILARITY AND THE POINT SPECTRUM OF SOME NON-SELFADJOINT JACOBI MATRICES
نویسندگان
چکیده
منابع مشابه
Some Jacobi Matrices with Decaying Potential and Dense Point Spectrum
We discuss doubly infinite matrices of the form Mi — δi + 1 -\-δί ._ t + Ff<5i;. as operators on / 2 . We present for each 8>0, examples of potentials Vn with \Vn\ = O(n~ ί/2 + ) and where M has only point spectrum. Our discussion should be viewed as a remark on the recent work of Delyon, Kunz, and Souillard.
متن کاملInequalities for the eigenvalues of non-selfadjoint Jacobi operators
We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.
متن کاملThe absolutely continuous spectrum of Jacobi matrices
I explore some consequences of a groundbreaking result of Breimesser and Pearson on the absolutely continuous spectrum of one-dimensional Schrödinger operators. These include an Oracle Theorem that predicts the potential and rather general results on the approach to certain limit potentials. In particular, we prove a Denisov-Rakhmanov type theorem for the general finite gap case. The main theme...
متن کاملThe Discrete Spectrum for Complex Perturbations of Periodic Jacobi Matrices
We study spectrum inclusion regions for complex Jacobi matrices which are compact perturbations of real periodic Jacobi matrix. The condition sufficient for the lack of discrete spectrum for such matrices is given.
متن کاملLimit Periodic Jacobi Matrices with a Singular Continuous Spectrum and the Renormalization of Periodic Matrices
For all hyperbolic polynomials we proved in [11] a Lipschitz estimate of Jacobi matrices built by orthogonalizing polynomials with respect to measures in the orbit of classical Perron-Frobenius-Ruelle operators associated to hyperbolic polynomial dynamics (with real Julia set). Here we prove that for all sufficiently hyperbolic polynomials this estimate becomes exponentially better when the dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2003
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091502000925